Process Ontology

Marie Duzi!, Martina Cihalova!, Marek Mengik!2, and Luk4s Vich!

I Department of Computer Science FEI, VSB-Technical University Ostrava
17. listopadu 15, 708 33 Ostrava, Czech Republic
2 Institute of Computer Science FPF, Silesian University Opava
Bezrucovo nam. 13, 746 01, Opava, Czech Republic
m.tina.cihal@gmail.com, marie.duzi@vsb.cz, mensikm@gmail.com,
lukas.vich.st@vsb.cz

Abstract. In the paper we propose a method of building up ontology
of processes. First, a summary of our approach to ontology building us-
ing Transparent Intensional Logic (TIL) is presented. Since TIL operates
smoothly at three levels of abstraction, namely hyperintensional, inten-
sional and extensional level, we have a logical machinery to explicate
concepts as hyperintensions which we define as TIL closed constructions
in their normal form. Constructions are procedures that produce intensions
or extensions as their products. Thus TIL is apt for modelling ontology as
an extensional logic of (hyper-)intensions. However, while ontologies of a
given specific domain are frequently studied, ontology of processes has been
rather neglected. The goal of this paper is to fill the gap and to extend our
method to the specification of process ontology. Since logical analysis pre-
supposes full linguistic competency, we intend to make use of the results
of linguistic analysis, in particular of verb-valency frames. Each process
can be specified by a verb (what is to be done), possibly with parameters
like the agent/actor of the process (who), the object to be operated on,
resources, etc. Since valency frames correspond to senses of verbs, we thus
obtain a finer specification of the process/procedure. Particular properties
of the actor and other parameters are then specified as requisites of the
process or its typical properties.

Key words: til, ontology, valency frames, process

1 Introduction

The term ‘ontology” has been borrowed from philosophy, where ontology is
a systematic account of existence. In recent computer science and artificial
intelligence a formal ontology is an explicit and systematic conceptualization
of a domain of interest. Given a domain, ontological analysis should clarify
the structure of knowledge on what exists in the domain. A formal ontology is,
or should be, a stable heart of an information system that makes knowledge
sharing, reuse and reasoning possible. As J. Sowa says in [9], “logic itself has no
vocabulary for describing the things that exist. Ontology fills that gap: it is the

Petr Sojka, Ales Hordk (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2010, pp. 77-88, 2010. (© Tribun EU 2010

78 M. Duzi, M. Cihalovd, M. Mensik, L. Vich

study of existence, of all the kinds of entities — abstract and concrete — that
make up the world”.

Current languages and tools applicable in the area of an ontology design
focus in particular on the form of ontological representation rather than what
a semantic content of ontology should be. Of course, a unified syntax is useful,
but the problems of syntax are almost trivial compared to the problems of
developing a common semantics for any domain. Duzi and Materna in [3]
dealt with semantic ontology content in general. In this paper we focus on a
process ontology design. Each process can be specified by a verb (what is to be
done), with parameters like the agent/actor of the process (who), the object to
be operated on, resources, etc. Since valency frames correspond to senses of
verbs, we thus obtain a specification of the process. As a specification tool we
apply the procedural semantic framework of Transparent Intensional Logic (TIL)
which is briefly introduced in Section 2. Section 3 provides a summary of an
ontology content in general, and in the main Section 4 we propose a process
ontology based on valency frames. The proposal is illustrated by an example of
the analysis of an accident.

2 TIL in Brief

Since the pioneering paper [5] logicians and semanticists have striven to
define so-called structured meanings that would comply with the principles
of compositionality and universal referential transparency. Various adjustments
of Frege’s semantic schema have been proposed, shifting the entity named by
an expression from the extensional level of atomic (physical/abstract) objects to
the intensional level of molecular objects such as sets or functions/mappings.
Yet natural language is rich enough to generate expressions that talk neither
about extensional nor intensional objects. Propositional attitudes are notoriously
known as the hard cases that are neither extensional nor intensional, as Carnap in
(1947) [1] characterized them. It has become increasingly clear since the 1970s that
we need to individuate meanings more finely than by possible-world intensions,
and the need for hyperintensional semantics is now broadly recognised. Our
position is a plea for hyperintensional semantics, which takes expressions as
encoding algorithmically structured procedures producing extensional/intensional
entities (or lower-order procedures) as their products. This approach — which
could be characterized as being informed by an algorithmic or computational
turn — has been advocated by, for instance, Moschovakis in (1994) [8]. Yet
much earlier, in the early 1970s, Tichy introduced his notion of construction and
developed the system of Transparent Intensional Logic (TIL).3

Constructions, as well as the entities they construct, all receive a type. The
ontology of TIL is organized in an infinite, bi-dimensional hierarchy of types.
Since we strictly distinguish between a construction of an object and the object
itself, and between a function and its value, construction must be always of a
higher order than the object it constructs, and a function is of a higher degree

3 See Tichy (1988 and 2004) [11,12].

Process Ontology 79

than its value. Thus one dimension of the type hierarchy increases molecular
complexity of functions, the other dimension increases the order of constructions.
Our definitions are inductive, and they proceed in three stages. First, we define
the simple types of order 1 comprising non-constructions. Then we define
constructions and, finally, the ramified hierarchy of types.

Definition 1. (types of order 1). Let B be a base, where a base is a collection of
pair-wise disjoint, non-empty sets. Then:

(i) Every member of B is an elementary type of order 1 over B.

(ii) Let a,Bq,...,Bm(m > 0) be types of order 1 over B. Then the collection
(aB1...Bm) of all m-ary partial mappings from B1 X ... X By into « is a
functional type of order 1 over B.

(iii) Nothing is a type of order 1 over B unless it so follows from (i) and (ii).

The types ad (ii) are functional types. They are sets of partial functions, i.e.,
functions that associate every m-tuple of arguments with at most one value.
Thus total functions are a special kind of partial functions.

The choice of the base depends on the area and language we happen to be
investigating. When investigating purely mathematical language, the base can
consist of, e.g., two atomic types; o, the type of truth-values, and v, the type of
natural numbers. For the purposes of natural-language analysis, we are currently
assuming the following base of ground types, which is part of the ontological

commitments of TIL:
0 the set of truth-values {T,F};

¢ the set of individuals (the universe of discourse);
T the set of real numbers (doubling as discrete times);
w the set of logically possible worlds (the logical space).

Since function rather than relation is a primitive notion of TIL, we model
sets and relations by their characteristic functions. Thus, for example, the set of
prime numbers is a function of type (07) that associates any number with T or F
according as the given number is a prime.

Definition 2. (intension and extension)

(PWS) intensions are entities of type (Bw): mappings from possible worlds to some
type B. The type B is frequently the type of the chronology of a-objects, i.e., mapping of
type (aT). Thus a-intensions are frequently functions of type ((aT)w), abbreviated as
‘w1, . Extensions are entities of a type a where a # (Bw) for any type B.

Examples of frequently used intensions are:
propositions (denoted by declarative sentences) are of type o0y; properties of
individuals (usually denoted by nouns or intransitive verbs like ‘is a student’,
‘walks’) of type (0t)<w; binary relations-in-intension between individuals are of
type (out)rw; individual offices/roles(usually denoted either by superlatives like
‘the highest mountain” or terms with built-in uniqueness, like “The President of
the USA") are of type i1w.

Expressions which denote non-constant intensions (i.e. functions that take
different values in at least two world-time pairs) are empirical. Note that some

80 M. Duzi, M. Cihalovd, M. Mensik, L. Vich

extensions involve the set of possible worlds, but not as their domain. For
instance, a set of propositions is an extensional entity of type (007«). On the
other hand, a property of propositions, like being true in a world w at time ¢, is
an intensional entity of type (00«)rcw-

Quantifiers V*, 3* are extensions, viz. type-theoretically polymorphous
functions of type (0(ox)), for an arbitrary type a, defined as follows. The universal
quantifier V* is a function that associates a class A of a-elements with T if A
contains all elements of the type &, otherwise with F. The existential quantifier 3*
is a function that associates a class A of a-elements with T if A is a non-empty
class, otherwise with F.

The singularizer Sing® is a partial type-theoretically polymorphic function
of type (« (o)) that associates a class C with the only a-element of C if C is a
singleton, otherwise the function Sing® is undefined.

Where A v-constructs a truth-value, i.e. an 0-object and x v-constructs an a-
object, we will often use the abbreviated notation ‘VxA’, ‘3xA’ and “1x A’ instead
of [%*Ax A, ‘[F*AxA]’, ‘[%*Ax A]’, respectively, when no confusion can arise.

Constructions are assigned to expressions as their algorithmically structured,
context-invariant meanings. When claiming that constructions are algorithmi-
cally structured, we mean the following. A construction C consists of one or
more particular steps, or constituents, that are to be individually executed in
order to execute C. The objects a construction operates on are not constituents of
the construction. Just like the constituents of a computer program are its sub-
programs, so the constituents of a construction are its sub-constructions. Thus
on the lowest level of non-constructions, the objects that constructions work
on have to be supplied by other (albeit trivial) constructions. The constructions
themselves may occur not only as constituents to be executed, but also as objects
that still other constructions operate on. Therefore, one should not conflate using
constructions as constituents of compound constructions and mentioning con-
structions that enter as input/output objects into compound constructions. So
we must strictly distinguish between using constructions as constituents and
mentioning constructions as objects.

Mentioning is, in principle, achieved by using atomic constructions. A
construction C is atomic if it does not contain any other construction as a used
sub-construction (a ‘constituent of C’) but C. There are two atomic constructions
that supply entities (of any type) on which compound constructions operate:
Variables and Trivializations. Compound constructions, which consist of other
constituents than just themselves, are Composition and Closure. Composition is
the instruction to apply a function to an argument in order to obtain its value
(if any) at the argument. It is improper, i.e., does not construct anything, if the
function is not defined at the argument. Closure is the instruction to construct a
function by abstracting over variables in the ordinary manner of A-calculi. Finally,
higher-order constructions can be used once or twice over as constituents of
constructions. This is achieved by a fifth and sixth construction called Execution
and Double Execution, respectively.

Process Ontology 81

Definition 3. (construction).

(i) The variable x is a construction that v-constructs an object O of the respective
type dependently on a valuation v.

(ii) Trivialization: Where X is an object whatsoever (an extension, an intension or a
construction), %X is the construction Trivialization. It constructs X without any
change.

(ili) The Composition [X Y] ... Yy,] is the following construction. If X v-constructs a
function f of type («P1 ... PBm), and Y1, ..., Yy v-construct entities By, . .., By of
types B1, . .., Bm, respectively, then the Composition [X Y7 ... Y}] v-constructs
the value (an entity, if any, of type «) of f on the tuple arqument (B, ..., By).
Otherwise the Composition [X Y] ... Y},] does not v-construct anything and so
is v-improper.

(iv) The Closure [Axy...xy Y] is the following construction. Let x1, X3, ..., X, be
pair-wise distinct variables v-constructing entities of types B1,..., Bm and Y a
construction v-constructing an a-entity. Then [Axy ... xy Y is the construction
A-Closure (or Closure). It v-constructs the following function f of the type
(aBq...Bm). Let v(B1/x1,...,Bu/xm) be a valuation identical with v at least
up to assigning objects B1/B1,...,Bu/Pm to variables x1,...,%y. If Y is
v(B1/x1, ..., Bu/xm)-improper (see iii), then f is undefined on (By, ..., By).
Otherwise the value of f on (By, ..., By) is the a-entity v(By/x1,..., By /Xm)-
constructed by Y.

(v) The Single Execution !X is the construction that v-constructs the entity v-
constructed by X. Otherwise X is v-improper.

(vi) The Double Execution 2X is the following construction. If X v-construct a
construction Y and Y v-construct an entity Z, then 2X v-constructs Z. Otherwise
X is v-improper.

(vil) Nothing is a construction, unless it so follows from (i) through (vi).

Notation and abbreviations.

- ‘X /&’ means that the object X is (a member) of type «;

- ‘X —, «’ means that the type of the object v-constructed by X is «. We use
‘X — o’ if what is v-constructed does not depend on a valuation v;

— We will standardly use the variables w —;, w and t = T;

—If C —4 arw, the frequently used Composition [[Cw]t], the intensional descent
of the a-intension v-constructed by C, will be written as ‘Cyy’;

— When using constructions of truth-value functions, namely A (conjunction), V
(disjunction) and D (implication) of type (000), and — (negation) of type (00),
we often omit Trivialisation and use infix notion;

— When using identity relations =* /(oa«), we often omit the superscript « and
use infix notation, whenever no confusion arises.

As mentioned above, constructions themselves are objects and thus also
receive a type. Only it cannot be a type of order 1, because a construction cannot
be of the same type as the object it constructs. Constructions that construct
entities of order 1 are constructions of order 1. They belong to a type of order 2,
denoted by “x;’. This type *1, together with atomic types of order 1, serves as
the base for the following induction rule: any collection of partial mappings,

82 M. Duzi, M. Cihalovd, M. Mensik, L. Vich

type (aBq...Bn), involving *; in their domain or range is a type of order 2.
Constructions belonging to the type *p, which identify entities of order 1 or
2, and partial mappings involving such constructions, belong to a type of order 3;
and so on ad infinitum.

The definition of the ramified hierarchy of types decomposes into three parts.
First, simple types of order 1 were already defined by Definition 1. Second, we
define constructions of order n, and third, types of order n + 1.

Definition 4. (ramified hierarchy of types).

Ty (types of order 1). See Definition 1.
C, (constructions of order n).
i) Let x be a variable ranging over a type of order n. Then x is a construction of
order n over B.
ii) Let X be a member of a type of order n. Then °X, X, 2X are constructions of
order n over B.
iii) Let X, Xy,..., Xm (m > 0) be constructions of order n over B. Then
[X Xj ... Xy is a construction of order n over B.
iv) Let x1, ..., xm, X (m > 0) be constructions of order n over B. Then
[Ax1...x X] is a construction of order n over B.
v) Nothing is a construction of order n over B unless it so follows from C,
(i)~(iv).
T,41 (types of order n + 1). Let ,, be the collection of all constructions of order n
over B. Then
i) *y, and every type of order n are types of order n + 1.
ii) If0 < mand a, By, ..., Bm are types of order n + 1 over B, then (a By ... Bm)
is a type of order n 4 1 over B.
iii) Nothing is a type of order n + 1 over B unless it so follows from T, (i) and
(ii).
So much for the logical machinery we are going to apply in the next
paragraphs in order to specify the process-ontology content.

3 Ontology Content

Formal ontology is a result of the conceptualization of a given domain. Typically,
a formal ontology encompasses these parts:

(1) Conceptual (terminological) dictionary which contains:
a) primitive concepts
b) compound concepts (ontological definitions of entities)
c) the most important descriptive attributes, in particular identification of
entities
(2) Relations
a) contingent empirical relations between entities, in particular the part-
whole relation
b) analytical relations between intensions, i.e., requisites and essence, which
give rise to ISA hierarchy

Process Ontology 83

(3) Integrity constraints
a) analytically necessary rules
b) nomologically necessary rules
c) common rules of ‘necessity by convention’

The process of an ontology design usually begins with the specification
of primitive concepts, i.e., Trivializations of objects that are not constructions.
These primitive concepts are supposed to be commonly understood and they are
not further refined. For instance, primitive concepts of traffic-system ontology
might be Agent, “Lane, ‘Crossroads, etc. Next we specify compound concepts as
ontological definitions of entities of a given domain. For instance, a road can
be defined as consisting of two or more lanes which pass from a crossroad to
another crossroad.

When specifying relations between entities, we distinguish between empir-
ical and analytical relations. The former are relations-in-intension, mostly be-
tween individuals, like the part-whole relation. Analytical relations are relations-
in-extension between intensions, for instance, a requisite relation and a prop-
erty typical for another property. These relations give rise to ISA taxonomies.
For instance, that a driver is a person is analytically necessary proposition
TRUE that takes the value T in all (w, t)-pairs. The requisite relation of the type
(0(0t)rw(0t)1w) between the property of being a driver and the property of being
a person is defined as follows:

[’Req ®Person *Driver] =4f Vwvt[Vx[[°Drivery: x] D [*Personq; x]]]

Gloss.Being a person is a requisite of being a driver. In other words, necessarily
for any individual x, if x instantiates the property of being a driver then x also
instantiates the property of being a person.

On the other hand, a driver typically owns a car, unless he is a chauffeur
or a chauffeuse working for somebody else without owning a car. We say that
owning a car is a typical property of a driver:

[°Typically ©OwnCar °Driver *Exception] =af
VwVt[Vx [=[°Exceptiony: x] D [[*Drivery: x] O ["OwnCary x]]]]
Requisites and typical properties can obtain between intensions of any type.
Here we define these relations only between properties of individuals. The
other kinds can be easily deduced from this one. Let p, g, exc —¢ (01)7ew; X =50 £;

True/(007w)rw: the property of a proposition of being true in a world w at time
t. Then g is a requisite of p, if and only if

Vvt V[[PTrueqs AwAt[puwr x]] O [(Truew: AwAt[gor x]]]]
The relation of being a typical property is defined as follows:

VY[V [=[PTrueqm: AwAtexcyr x]] O
[°Truewt AwAt[pwr x]] O [*Truew: AwAt|go x]]]]]

84 M. Duzi, M. Cihalovd, M. Mensik, L. Vich

Gloss. p is typical of g unless exc(eption).

Note. Due to partiality, we must use the property of propositions of being
true. It returns the value T if the given proposition takes the value T in a
(w, t)-pair, otherwise F. If we did not apply this property, then it might be
the case that [pwtx] would be v-improper and thus the whole Composition
[°Trueqpt AwAt[pyr x]] D [*Truew: AwAt[gqt x]]] would be v-improper as well,
which means that the above Closure would construct F. This is wrong, for sure,
because the relation of being a requisite, providing it is valid, then it is valid in
all (w, t)-pairs.

Example. The requisite of the property of having stopped smoking is the
property of previous smoking. Thus for those individuals y who never smoked
the Composition [’StopedSmoking,+y] is v-improper, StopedSmoking/(0t)zw;
Y=ol

It is a well-known fact that hierarchies of intensions based on requisite
relations establish inheritance of attributes and possibly also of operations. For
instance, a driver in addition to his/her special attributes like having a driving
license inherits all the attributes of a person. This is another reason for including
such a hierarchy into ontology. This concludes our summary of the logic of
intensions. Now we are going to investigate ontology of processes.

4 Ontology of Processes

The specification of processes is driven by the analysis of verbs that denote
actions. For instance, the specification of the process of John’s driving from
Prague to Ostrava is given by the sense of the verb "to drive’ together with its
arguments (who is driving: the actor, from where, to where, etc.).

Our analysis makes use of Tichy’s (1980) [10], where such verbs are called
emphepisodic verbs. They tell us what people do rather than what they are. Thus
while attributive verbs like ‘to be happy’, ‘to be a good pianist” ascribe to people
empirical properties, John’s driving from Prague to Ostrava is not a condition
in which John may be. Rather, it is John’s behaviour, a time consuming process
consisting of a series of events.

Here we are not going to deal with an exact definition of an event and
an episode/process. Referring for details to Tichy [10] (1980), we just briefly
summarise. Tichy defines an event as a set of basic propositions (possibly with a
time-shift) together with a proposition specifying time when the event occurs.
Thus the type of an event is (007). Basic propositions are formed by the
application of a basic property to an individual. Basic individual properties
are the properties corresponding to pre-theoretical features of individuals which
together constitute an intensional base of a given language. A series of events
constitutes a process (Tichy’s episode). Each process has assigned a time span
when it occurs. Sure, John's driving from Prague to Ostrava on November 17
is another event than his driving on October 11. Moreover, each process has an
actor who does the process. The Does relation is of type (0:(0(00¢w)))rw, and it is

Process Ontology 85

defined as follows:
AwAt[*Doesqr x p] = AwAtTe[[pe] A [PActor xe] A [Occury e] A [["Rune] t]]

Additional types: x —4 1; p —o (0(00¢0)): @ process; e —, (007w): an event;
Actor/(01(007w)): the relation between an individual and an event in which this
individual is involved;* Occur/ (0(007w))w; Run/((0T)(00+w)): the function that
given an event returns a time interval when the event occurs in w.

Gloss. An individual x does a process p in world w at time ¢ iff there is an
event belonging to the process such that the event occurs in world w and runs at
time £, and x is an actor of the event.

In addition to the actor and the time span when the process occurs, many
other parameters of a process are desirable to be followed. As stated above, the
process specification is driven by episodic verbs. In order to determine the other
parameters of a process, we make use of the results of linguistic analysis, in
particular of verb-valence frames.

In linguistics, verb valence is characterized as the ability of a verb to be
linked to other terms of the discourse.’ This ability concerns the semantic
level of a language that is the deep structure of a sentence. Since valence
frames correspond to senses of verbs, we can obtain a finer specification of
the process/procedure. From the logical point of view, a verb denotes a relation
and the valence of the verb determines arity and the types of arguments of
the relation. Thus each process can be specified by a verb (what is to be done),
with the parameters like the agent/actor of the process (who), the objects to be
operated on, resources, etc.

Referring for details to http://ufal.mff.cuni.cz/vallex/2.5/doc/, we
quote:

Within the Functional Generative Description (FGD) framework, valence
frames in a narrow sense consist only of inner participants (both
obligatory and optional) and obligatory free modifications. In VALLEX
2.5, valence frames are enriched with quasi-valence complementations.
Moreover, a few non-obligatory free modifications occur in valence
frames too, since they are typically related to some verbs (or even to
whole classes of them) and not to others. (The other free modifications
can occur with the given verb too, but they are not contained in the
valence frame as their presence in a sentence is not understood as
syntactically conditioned in FGD.)

In VALLEX 2.5, a valence frame is modeled as a sequence of frame
slots. Each frame slot corresponds to one (either required or specifically
permitted) complementation of the given verb.

Note on terminology: in this text, the term ‘complementation’ (depen-
dent item) is used in its broad sense, not related to the traditional argu-
ment/adjunct (complement/modifier) dichotomy.

Tichy calls this relation ‘By’ and defines it as the relation that obtains between an individual 2 and an event
e whenever a exemplifies the basic properties involved in e, that is those properties that generate basic

propositions of which e consists of. ° For details see, e.g., Lotko (2003) [7].

86 M. Duzi, M. Cihalovd, M. Mensik, L. Vich

The following attributes are assigned to each slot: functor, list of possible
morphemic forms (realization), type of complementation.

In VALLEX 2.5, functors (labels for ‘deep roles’; similar to theta-roles)
are used for expressing types of relations between verbs and their
complementations. According to FGD, functors are divided into inner
participants (actants) and free modifications (this division roughly
corresponds to the argument/adjunct dichotomy). In VALLEX 2.5, we
also distinguish an additional group of quasi-valence complementations.

Functors that occur in VALLEX 2.5 are devided into three groups, viz. inner
participants, Quasi-valence complementations and free modifications. For our purpose,
inner participants are the most important. They are as follows:

ACT (actor),
ADDR (addressee),
PAT (patient),

EFF (effect) and
ORIG (origin).

The other functors, if needed, will be explained when used. Consider, for
instance, the simple sentence “Mary is sending a message to Tom”. We have the
process of Sending with three obligatory arguments: Who does the process (ACT:
the actor of the process), Whom (emphADDR: addressee) and What (PAT: the
message). Hence necessarily, whenever an actor does the process of Sending then
there is an addressee and a patient of the process. We will say that ADDR and
PAT are the requisites of the Sending process.

However, the requisite relation has been defined in Section 3 as the relation-
in-extension between intensions, but a process is defined as a set of events, i.e., an
extension, and ADDR is obviously an individual and PAT is a (hyper)proposition.
Thus a question arises, in which sense can we say that the requisite relation
obtains between a process and ADDR, PAT, respectively? As explained at the
outset of this section, there are basic properties of an actor or other individuals
involved in the process. The requisite relation between the Sending process and
ADDR can thus be explicated as follows:

[OReqpr q%Sending] =4f
. Vwvtvx[[*Doesq x°Sending] >
Je[[Sending e] A 3py[le p] A [pwi] O [qur y]]]]]

Types: Sending/(0(00+w)); X, Y =0 1; €/ (007w); P =0 0rw; § =0 (01) 1w

In our example the property g would be the property of being an addressee
of the message. Similarly for PAT.

The last notion we need to introduce into our ontology is the classification
of processes. Sure, the process of somebody’s getting up or singing the Czech
anthem is of a different kind than, for instance, the process of having a car crash.
Accordingly we can then assign requisites to all the members of a particular
class of processes.

As an example we adduce the processes of the class Accident. The obligatory
attributes (requisites) of each accident are as follows:

Process Ontology 87

— ACT - the actor(s) who caused the accident
— PAT - those who are involved in the accident
— TWHEN - time when the accident happened to occur

The other optional attributes (typical properties) are:

LOC - where the accident occurred

RCMP — damages

CAUS - the cause of the accident

EFF - the effects of the accident

BEN (benefactive) — who is to be compensated

Having specified these requisites and typical properties of an accident, we
can then specify ontological rules like

“The actor is responsible for the damage”

“The patient is the one to be compensated”

“The actor caused the accident”

“Typically, the actor is due to cover the accident compensation”
etc.

These rules make it possible to infer consequences of an accident, to calculate
the damage, etc. In this way the process ontology can serve as an information
resource for reasoning about the process.

5 Conclusion

In this paper we introduced the method of building up an ontology of processes.
We applied the method of logical analysis of natural language expressions as
provided within TIL, and made an attempt to exploit the results of linguistic
analysis as provided by the so-called verb-valence frames.

Yet we wish to say that the results presented here are just the first proposal,
and a lot of problems remain open. For instance, we only briefly tackled the
problem of the classification of processes, the problem of inferring consequences
of a process occurrence, etc. Thus the ontology of processes is still much work in
progress.

Acknowledgements

This research has been supported by the Grant Agency of the Czech Republic,
projects No. GACR 401/10/0792, “Temporal aspects of knowledge and infor-
mation” and 401/09/HO007 ‘Logical Foundations of Semantics’, and also by the
internal grant agency of FEECS VSB-TU Ostrava — IGA 22/2009 ‘Modelling,
simulation and verification of software processes’.

88 M. Duzi, M. Cthalova, M. Mensik, L. Vich
References
1. Carnap, R.: Meaning and Necessity, Chicago University Press (1947).

10.

11.
12.

. Duzi, M., Cihalova, M., Mensik, M: ‘Ontology as a logic of intensions’. In European-

Japanese Conference EJC 2010, A. Heimburger, Y. Kiyoki, T. Tokuda, N. Yoshida (eds.),
Jyvaskyla, Finland: University of Jyvaskyla, 9-28 (2010).

. Duzi, M., Materna, P.: ‘Concepts and Ontologies’. In Information Modelling and

Knowledge Bases XX, Y. Kiyoki, T. Tokuda, H. Jaakola, X. Chen and N. Yoshida (eds.),
Amsterdam: 10S Press, (2009) 45-64.

. Duzi, M., Jespersen, B., Materna, P.: Procedural Semantics for Hyperintensional Logic

(Foundations and Applications of TIL). Berlin/Heidelberg: Springer, series Logic,
Epistemology, and the Unity of Science (2010).

. Frege, G.: ‘Uber Sinn und Bedeutung’, Zeitschrift fiir Philosophie und philosophische

Kritik, vol. 100 (1892), 25-50.

. Haji¢ové, E.: ‘What we are talking about and what we are saying about it’. In Compu-

tational Linguistics and Intelligent Text Processing, LNCS Springer Berlin/Heidelberg,
vol. 4919, 241-262 (2008).

. Lotko, E.: Slovnik linguvistickijch terminii pro filology, Olomouc (2003).
. Moschovakis, Y.N.: ‘Sense and denotation as algorithm and value’. In J. Vadninen

and J. Oikkonen (eds.), Lecture Notes in Logic, vol. 2, Berlin: Springer, pp. 210-249
(1994).

. Sowa, J.: Knowledge Representation. Logical, Philosophical, and Computational

Foundations. Brooks/Cole (2000).

Tichy, P.: “The semantics of episodic verbs’, Theoretical linguistics, 7, 263-296 (1980).
Reprinted in: Tichy (2004, pp. 409—444).

Tichy, P.: The Foundations of Frege’s Logic, Berlin, New York: De Gruyter (1988).
Tichy, P.: Pavel Tichy’s Collected Papers in Logic and Philosophy, Dunedin: University of
Otago Press; Prague: Filosofia, Czech Academy of Sciences (2004).

